Similarity Matrix Learning Using Dimensionality Reduction for Ontology Applications
نویسندگان
چکیده
منابع مشابه
Dimensionality Reduction using Similarity-induced Embeddings
The vast majority of dimensionality reduction (DR) techniques rely on the second-order statistics to define their optimization objective. Even though this provides adequate results in most cases, it comes with several shortcomings. The methods require carefully designed regularizers and they are usually prone to outliers. In this paper, a new DR framework that can directly model the target dist...
متن کاملSimultaneously Learning Neighborship and Projection Matrix for Supervised Dimensionality Reduction
Explicitly or implicitly, most of dimensionality reduction methods need to determine which samples are neighbors and the similarity between the neighbors in the original highdimensional space. The projection matrix is then learned on the assumption that the neighborhood information (e.g., the similarity) is known and fixed prior to learning. However, it is difficult to precisely measure the int...
متن کاملUsing Dimensionality Reduction to Improve Similarity Judgements for Recommendation
Recommendation Explorer is an experimental recommender system that attempts to address the provisional and contextual nature of user information needs by coupling the system's interface and recommendation algorithms. This study reports on the development and evaluation of a new similarity module for RecEx. Based on dimensionality reduction via the Singular Value Decomposition (SVD), the new mod...
متن کاملDimensionality reduction for supervised learning
Outline Motivation Dimensionality reduction Experimental setup Results Discussion References Outline Motivation Supervised learning High dimensionality Dimensionality reduction Principal component analysis Random projections Experimental setup Algorithms and datasets Procedure Results Discussion Outline Motivation Dimensionality reduction Experimental setup Results Discussion References Motivat...
متن کاملRelevance Learning for Dimensionality Reduction
Nonlinear dimensionality reduction (NLDR) techniques offer powerful data visualization schemes capturing nonlinear effects of the data at the costs of a decreased interpretability of the projection: Unlike for linear counterparts such as principal component analysis, the relevance of the original feature dimensions for the NLDR projection is not clear. In this contribution we propose relevance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Technology Journal
سال: 2013
ISSN: 1812-5638
DOI: 10.3923/itj.2013.7442.7447